Command last updated 6/3/2024.
Extends Charlie Watson’s eActivity. Modify the values of the input variables, then click the top line and hit EXE. The outputs are stored in the relevant variables.
Find vector and Cartesian equations of line given 2 points on line.
Input: A, B
Output: A, AB, C
C = {(x-a)/b, (y-c)/d, (z-e)/f} represents (x-a)/b = (y-c)/d = (z-e)/f
r = A + λAB
Find the line passing through points \((-3, -1, -10)\) and \((5, -6, 4)\). (Sample Specialist Exam 2 Section A Question 4)
Find Cartesian equation of line given 1 point and 1 direction vector on line.
Input: A, P
Output: C
C = {(x-a)/b, (y-c)/d, (z-e)/f} represents (x-a)/b = (y-c)/d = (z-e)/f
r = A + λP
Find a Cartesian equation of the line \(\mathbf{r}(\lambda) = -\mathbf{i} + \mathbf{j} - 3\mathbf{k} + \lambda(2\mathbf{i} + 4\mathbf{j} - 7\mathbf{k})\).
Find vector equation of line given Cartesian equation of line.
Input: C
Output: A, P
C = {(x-a)/b, (y-c)/d, (z-e)/f} represents (x-a)/b = (y-c)/d = (z-e)/f
r = A + λP
Find a vector equation of the line \(\dfrac{x+3}{2} = \dfrac{2-y}{3} = \dfrac{z+1}{5}\).
Find shortest distance between point and line.
Input: P, A, B
Output: D, M
r = A + λB
\(A = (1, 1, 2)\), \(B = (1, 2, 3)\) and \(C = (3, 2, 4)\). Find the shortest distance from \(B\) to line segment \(AC\). (2023 Specialist Exam 2 Section B Question 5b)
Find shortest distance between two lines.
Input: rA, vA, rB, vB
Output: AB, D
r = rA + λvA
r = rB + μvB
Find the shortest distance between the lines \(\mathbf{r}(t) = 4\mathbf{i} + 2\mathbf{j} + \mathbf{k} + t(-\mathbf{i} + \mathbf{j} + 3\mathbf{k})\) and \(\mathbf{r}(s) = 5\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + s(-\mathbf{i} + \mathbf{j} + 3\mathbf{k})\). (Sample Specialist Exam 2 Section B Question 4a)
Find intersection between two lines.
Input: rA, vA, rB, vB
Output: Soln1, Soln2, X
r = rA + λvA
r = rB + μvB
Find \(a\) and the point of intersection between the intersecting lines \(\mathbf{r}(t) = \mathbf{i} - 3\mathbf{j} + 6\mathbf{k} + t(3\mathbf{i} + 5\mathbf{j} - a\mathbf{k})\) and \(\mathbf{r}(s) = -6\mathbf{i} + 2\mathbf{j} + \mathbf{k} + s(4\mathbf{i} - 10\mathbf{j} + 6\mathbf{k})\). (Sample Specialist Exam 2 Section B Question 4b)
Find both angles between two lines.
Input: vA, vB
Output: θ1, θ2
r = rA + λvA
r = rB + μvB
Find the angles between the lines \(\mathbf{r}(t) = \mathbf{i} + 2\mathbf{k} + t(2\mathbf{i} - \mathbf{j} + \mathbf{k})\) and \(\mathbf{r}(s) = -2\mathbf{i} + 2\mathbf{j} + \mathbf{k} + s(-3\mathbf{i} + 2\mathbf{j} - \mathbf{k})\).